Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Front Psychiatry ; 15: 1235171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651011

RESUMO

Background: We investigated a potential sex difference in the relationship between alcohol consumption, brain age gap and cognitive function in older adults without cognitive impairment from the population-based Mayo Clinic Study of Aging. Methods: Self-reported alcohol consumption was collected using the food-frequency questionnaire. A battery of cognitive testing assessed performance in four different domains: attention, memory, language, and visuospatial. Brain magnetic resonance imaging (MRI) was conducted using 3-T scanners (Signa; GE Healthcare). Brain age was estimated using the Brain-Age Regression Analysis and Computational Utility Software (BARACUS). We calculated the brain age gap as the difference between predicted brain age and chronological age. Results: The sample consisted of 269 participants [55% men (n=148) and 45% women (n=121) with a mean age of 79.2 ± 4.6 and 79.5 ± 4.7 years respectively]. Women had significantly better performance compared to men in memory, (1.12 ± 0.87 vs 0.57 ± 0.89, P<0.0001) language (0.66 ± 0.8 vs 0.33 ± 0.72, P=0.0006) and attention (0.79 ± 0.87 vs 0.39 ± 0.83, P=0.0002) z-scores. Men scored higher in visuospatial skills (0.71 ± 0.91 vs 0.44 ± 0.90, P=0.016). Compared to participants who reported zero alcohol drinking (n=121), those who reported alcohol consumption over the year prior to study enrollment (n=148) scored significantly higher in all four cognitive domains [memory: F3,268 = 5.257, P=0.002, Language: F3,258 = 12.047, P<0.001, Attention: F3,260 = 22.036, P<0.001, and Visuospatial: F3,261 = 9.326, P<0.001] after correcting for age and years of education. In addition, we found a significant positive correlation between alcohol consumption and the brain age gap (P=0.03). Post hoc regression analysis for each sex with language z-score revealed a significant negative correlation between brain age gap and language z-scores in women only (P=0.008). Conclusion: Among older adults who report alcohol drinking, there is a positive association between higher average daily alcohol consumption and accelerated brain aging despite the fact that drinkers had better cognitive performance compared to zero drinkers. In women only, accelerated brain aging is associated with worse performance in language cognitive domain. Older adult women seem to be vulnerable to the negative effects of alcohol on brain structure and on certain cognitive functions.

2.
Environ Sci Pollut Res Int ; 31(16): 23951-23967, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436858

RESUMO

Accurate prediction of the groundwater level (GWL) is crucial for sustainable groundwater resource management. Ecological water replenishment (EWR) involves artificially diverting water to replenish the ecological flow and water resources of both surface water and groundwater within the basin. However, fluctuations in GWLs during the EWR process exhibit high nonlinearity and complexity in their time series, making it challenging for single data-driven models to predict the trend of groundwater level changes under the backdrop of EWR. This study introduced a new GWL prediction strategy based on a hybrid deep learning model, STL-IWOA-GRU. It integrated the LOESS-based seasonal trend decomposition algorithm (STL), improved whale optimization algorithm (IWOA), and Gated recurrent unit (GRU). The aim was to accurately predict GWLs in the context of EWR. This study gathered GWL, precipitation, and surface runoff data from 21 monitoring wells in the Yongding River Basin (Beijing Section) over a period of 731 days. The research results demonstrate that the improvement strategy implemented for the IWOA enhances the convergence speed and global search capabilities of the algorithm. In the case analysis, evaluation metrics including the root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and Nash-Sutcliffe efficiency (NSE) were employed. STL-IWOA-GRU exhibited commendable performance, with MAE achieving the best result, averaging at 0.266. When compared to other models such as Variance Mode Decomposition-Gated Recurrent Unit (VMD-GRU), Ant Lion Optimizer-Support Vector Machine (ALO-SVM), STL-Particle Swarm Optimization-GRU (STL-PSO-GRU), and STL-Sine Cosine Algorithm-GRU (STL-SCA-GRU), MAE was reduced by 18%, 26%, 11%, and 29%, respectively. This indicates that the model proposed in this study exhibited high prediction accuracy and robust versatility, making it a potent strategic choice for forecasting GWL changes in the context of EWR.


Assuntos
Aprendizado Profundo , Água Subterrânea , Animais , Recursos Hídricos , Cetáceos , Água
4.
RSC Adv ; 14(11): 7517-7527, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38440275

RESUMO

Intraoperative bleeding is a pivotal factor in the initiation of early recurrence and tumor metastasis following breast cancer excision. Distinct advantages are conferred upon postoperative breast cancer treatment through the utilization of locally administered implant therapies. This study devised a novel 3D sponge implant containing cisplatin-loaded chitosan-calcium alginate MPs capable of exerting combined chemotherapy and hemostasis effects. This innovative local drug-delivery implant absorbed blood and residual tumor cells post-tumor resection. Furthermore, the cisplatin-loaded chitosan-calcium alginate MPs sustainably targeted and eliminated cancer cells, thereby diminishing the risk of local recurrence and distant metastasis. This hydrogel material can also contribute to breast reconstruction, indicating the potential application of the 3D sponge in drug delivery for breast cancer treatment.

5.
Brain Connect ; 14(2): 122-129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308482

RESUMO

Background: Balance between brain structure and function is implicated in aging and many brain disorders. This study aimed to investigate the coupling between brain structure and function using 18F-fludeoxyglucose positron emission tomography (PET)/magnetic resonance imaging (MRI). Methods: One hundred thirty-eight subjects who underwent brain 18F-FDG PET/MRI were recruited. The structural and functional coupling at the regional level was explored by calculating within-subject Spearman's correlation between glucose metabolism (GluM) and cortical thickness (CTh) across the cortex for each subject, which was then correlated with age to explore its physiological effects. Then, subjects were divided into groups of middle-aged and young adults and older adults (OAs); structural connectivity (SC) based on CTh and functional connectivity (FC) based on GluM were constructed for the two groups, respectively, followed by exploring the connective-level structural and functional coupling on SC and FC matrices. The global and local efficiency values of the brain SC and FC were also evaluated. Results: Of the subjects, 97.83% exhibited a significant negative correlation between regional CTh and GluM (r = -0.24 to -0.71, p < 0.05, FDR correction), and this CTh-GluM correlation was negatively correlated with age (R = -0.35, p < 0.001). For connectivity matrices, many regions showed positive correlation between SC and FC, especially in the OA group. Besides, FC exhibited denser connections than SC, resulting in both higher global and local efficiency, but lower global efficiency when the network size was corrected. Conclusions: This study found couplings between CTh and GluM at both regional and connective levels, which reflected the aging progress, and might provide new insight into brain disorders. Impact statement The intricate interplay between brain structures and functions plays a pivotal role in unraveling the complexities inherent in the aging process and the pathogenesis of neurological disorders. This study revealed that 97.83% subjects showed negative correlation between the brain's regional cortical thickness and glucose metabolism, while at the connective level, many regions showed positive correlations between structural and functional connectivity. The observed coupling at the regional and connective levels reflected physiological progress, such as aging, and provides insights into the brain mechanisms and potential implications for the diagnosis and treatment of brain disorders.


Assuntos
Encefalopatias , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Adulto Jovem , Humanos , Idoso , Encéfalo/patologia , Espessura Cortical do Cérebro , Encefalopatias/patologia , Glucose/metabolismo , Tomografia por Emissão de Pósitrons
6.
Toxicol Appl Pharmacol ; 484: 116859, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342443

RESUMO

When liver or intestinal function is impaired, bilirubin accumulates in the body and leads to neonatal jaundice. However, the potential negative effects caused by excessive accumulation of bilirubin such as developmental immunotoxicity and neurotoxicity remain unclear. We used a zebrafish model to establish bilirubin-induced jaundice symptoms and evaluated the toxic effects of bilirubin in aquatic organisms. Firstly, our results suggested that bilirubin exposure markedly decreased the survival rate, induced the developmental toxicity and increased the yellow pigment deposited in the zebrafish tail. Meanwhile, the number of macrophages and neutrophils was substantially reduced in a concentration-dependent manner. Besides, the antioxidant enzyme activities were greatly elevated while the inflammatory genes were significantly decreased after bilirubin exposure. Secondly, transcriptome analysis identified 708 genes were differentially expressed after bilirubin exposure, which animal organ morphogenesis, chemical synaptic transmission, and MAPK / mTOR signaling pathways were significantly enriched. Thirdly, bilirubin exposure leads to a significant decrease in the motility of zebrafish, including a dose-dependent decrease in the travelled distance, movement time, and average velocity. Moreover, the innate immune genes and apoptosis-related genes such as TLR4, NF-κB p65, STAT3 and p53 were elevated at a concentration of 10 µg/mL of bilirubin. Finally, our results further revealed that the anti-inflammatory and neuroprotective minocycline could partially rescue the bilirubin-induced neurobehavioral disorders in zebrafish embryos. In conclusion, our study explored the bilirubin-induced immunotoxicity and neurotoxicity in aquatic organisms, which will provide a theoretical basis for the treatment of neonatal jaundice in clinical practice.


Assuntos
Icterícia Neonatal , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Minociclina/farmacologia , Bilirrubina , Icterícia Neonatal/metabolismo , Imunidade Inata , Estresse Oxidativo , Antioxidantes/farmacologia , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade
7.
Med ; 5(3): 201-223.e6, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38359839

RESUMO

BACKGROUND: Addiction is a chronic and relapsing brain disorder. Despite numerous neuroimaging and neurophysiological studies on individuals with substance use disorder (SUD) or behavioral addiction (BEA), currently a clear neural activity signature for the addicted brain is lacking. METHODS: We first performed systemic coordinate-based meta-analysis and partial least-squares regression to identify shared or distinct brain regions across multiple addictive disorders, with abnormal resting-state activity in SUD and BEA based on 46 studies (55 contrasts), including regional homogeneity (ReHo) and low-frequency fluctuation amplitude (ALFF) or fractional ALFF. We then combined Neurosynth, postmortem gene expression, and receptor/transporter distribution data to uncover the potential molecular mechanisms underlying these neural activity signatures. FINDINGS: The overall comparison between addiction cohorts and healthy subjects indicated significantly increased ReHo and ALFF in the right striatum (putamen) and bilateral supplementary motor area, as well as decreased ReHo and ALFF in the bilateral anterior cingulate cortex and ventral medial prefrontal cortex, in the addiction group. On the other hand, neural activity in cingulate cortex, ventral medial prefrontal cortex, and orbitofrontal cortex differed between SUD and BEA subjects. Using molecular analyses, the altered resting activity recapitulated the spatial distribution of dopaminergic, GABAergic, and acetylcholine system in SUD, while this also includes the serotonergic system in BEA. CONCLUSIONS: These results indicate both common and distinctive neural substrates underlying SUD and BEA, which validates and supports targeted neuromodulation against addiction. FUNDING: This work was supported by the National Natural Science Foundation of China and Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.


Assuntos
Comportamento Aditivo , Transtornos Relacionados ao Uso de Substâncias , Estados Unidos , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Córtex Pré-Frontal
8.
Transl Psychiatry ; 14(1): 101, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374108

RESUMO

G protein-coupled receptor 55 (GPR55) has been thought to be a putative cannabinoid receptor. However, little is known about its functional role in cannabinoid action and substance use disorders. Here we report that GPR55 is predominantly found in glutamate neurons in the brain, and its activation reduces self-administration of cocaine and nicotine in rats and mice. Using RNAscope in situ hybridization, GPR55 mRNA was identified in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons, with no detection in midbrain dopamine (DA) neurons. Immunohistochemistry detected a GPR55-like signal in both wildtype and GPR55-knockout mice, suggesting non-specific staining. However, analysis using a fluorescent CB1/GPR55 ligand (T1117) in CB1-knockout mice confirmed GPR55 binding in glutamate neurons, not in midbrain DA neurons. Systemic administration of the GPR55 agonist O-1602 didnt impact ∆9-THC-induced analgesia, hypothermia and catalepsy, but significantly mitigated cocaine-enhanced brain-stimulation reward caused by optogenetic activation of midbrain DA neurons. O-1602 alone failed to alter extracellar DA, but elevated extracellular glutamate, in the nucleus accumbens. In addition, O-1602 also demonstrated inhibitory effects on cocaine or nicotine self-administration under low fixed-ratio and/or progressive-ratio reinforcement schedules in rats and wildtype mice, with no such effects observed in GPR55-knockout mice. Together, these findings suggest that GPR55 activation may functionally modulate drug-taking and drug-seeking behavior possibly via a glutamate-dependent mechanism, and therefore, GPR55 deserves further study as a new therapeutic target for treating substance use disorders.


Assuntos
Canabidiol , Cocaína , Receptores de Canabinoides , Transtornos Relacionados ao Uso de Substâncias , Animais , Camundongos , Ratos , Canabidiol/análogos & derivados , Cocaína/farmacologia , Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Knockout , Nicotina/farmacologia , Preparações Farmacêuticas/metabolismo , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/genética , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/metabolismo
9.
Front Psychiatry ; 15: 1341908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419897

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) holds promise for treating psychiatric disorders; however, the variability in treatment efficacy among individuals underscores the need for further improvement. Growing evidence has shown that TMS induces a broad network modulatory effect, and its effectiveness may rely on accurate modulation of the pathological network specific to each disorder. Therefore, determining the optimal TMS coil setting that will engage the functional pathway delivering the stimulation is crucial. Compared to group-averaged functional connectivity (FC), individual FC provides specific information about a person's brain functional architecture, offering the potential for more accurate network targeting for personalized TMS. However, the low signal-to-noise ratio (SNR) of FC poses a challenge when utilizing individual resting-state FC. To overcome this challenge, the proposed solutions include increasing the scan duration and employing the cluster method to enhance the stability of FC. This study aimed to evaluate the stability of a personalized FC-based network targeting model in individuals with major depressive disorder or schizophrenia with auditory verbal hallucinations. Using resting-state functional magnetic resonance imaging data from the Human Connectome Project, we assessed the model's stability. We employed longer scan durations and cluster methodologies to improve the precision in identifying optimal individual sites. Our findings demonstrate that a scan duration of 28 minutes and the utilization of the cluster method achieved stable identification of individual sites, as evidenced by the intraindividual distance falling below the ~1cm spatial resolution of TMS. The current model provides a feasible approach to obtaining stable personalized TMS targets from the scalp, offering a more accurate method of TMS targeting in clinical applications.

10.
Dev Cell ; 59(5): 645-660.e8, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38325371

RESUMO

Macropinocytosis, an evolutionarily conserved endocytic pathway, mediates nonselective bulk uptake of extracellular fluid. It is the primary route for axenic Dictyostelium cells to obtain nutrients and has also emerged as a nutrient-scavenging pathway for mammalian cells. How cells adjust macropinocytic activity in various physiological or developmental contexts remains to be elucidated. We discovered that, in Dictyostelium cells, the transcription factors Hbx5 and MybG form a functional complex in the nucleus to maintain macropinocytic activity during the growth stage. In contrast, during starvation-induced multicellular development, the transcription factor complex undergoes nucleocytoplasmic shuttling in response to oscillatory cyclic adenosine 3',5'-monophosphate (cAMP) signals, which leads to increased cytoplasmic retention of the complex and progressive downregulation of macropinocytosis. Therefore, by coupling macropinocytosis-related gene expression to the cAMP oscillation system, which facilitates long-range cell-cell communication, the dynamic translocation of the Hbx5-MybG complex orchestrates a population-level adjustment of macropinocytic activity to adapt to changing environmental conditions.


Assuntos
Dictyostelium , Animais , Dictyostelium/metabolismo , Pinocitose/fisiologia , Citoplasma , Núcleo Celular , Fatores de Transcrição/metabolismo , Mamíferos
11.
Exp Cell Res ; 436(2): 113924, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280435

RESUMO

Cervical cancer (CC), as a common female malignant tumor in the world, is an important risk factor endangering women's health worldwide. The purpose of this study was to investigate the role of RBM15 in CC. The TCGA database was used to screen differentially expressed m6A genes in normal and tumor tissues. QRT-PCR was used to quantify HEIH, miR-802, EGFR, cell stemness, and epithelial-mesenchymal transition (EMT)-related genes. The interaction between HEIH and miR-802 was verified by dual-luciferase reporter assay and RIP assay. The occurrence of tumor cells after different treatments was detected by CCK-8, transwell and EdU staining. BALB/c nude mice were used to examine the effects of different treatments on tumor growth and cell stemness in vivo. RBM15 was upregulated in tumor tissues and cells. M6A was highly enriched in HEIH and enhances its RNA stability. HEIH acts as an oncogenic lncRNA to promote CC cell proliferation, migration and tumor growth. Mechanistically, HEIH regulates tumor cell stemness and promotes the proliferation and migration of CC cells by competitively adsorbing miR-802 and up-regulating the expression of EGFR. In short, our data shown that the m6A methyltransferase RBM15 could affect tumor cell proliferation, metastasis and cell stemness by stabilizing HEIH expression.


Assuntos
Adenina/análogos & derivados , MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Animais , Camundongos , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/patologia , Camundongos Nus , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
12.
Andrology ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228861

RESUMO

PURPOSE: Teratozoospermia is the main pathogenic factor of male infertility. However, the genetic etiology of teratozoospermia is largely unknown. This study aims to clarify the relationship between novel variations in TENT5D and teratozoospermia in infertile patients. MATERIALS AND METHODS: Two infertile patients were enrolled. Routine semen analysis of patients and normal controls was conducted with the WHO guidelines. Whole-exome sequencing (WES) was conducted to identify pathogenic variants in the two patients. Morphology and ultrastructure analysis of spermatozoa in the two patients was determined by Papanicolaou staining, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The functional effect of the identified variants was analyzed by immunofluorescence staining and western blotting. The expression of TENT5D in different germ cells was detected by immunofluorescence staining. RESULTS: Two new hemizygous variations, c.101C > T (p.P34L) and c.125A > T (p.D42V), in TENT5D were detected in two patients with male infertility. Morphology analysis showed abnormalities in spermatozoa morphology in the two patients, including multiple heads, headless, multiple tails, coiled, and/or bent flagella. Ultrastructure analysis showed that most of the spermatozoa exhibited missing or irregularly arranged '9+2' structures. Further functional experiments confirmed the abrogated TENT5D protein expression in patients. In addition, both p.P34L and p.D42V substitutions resulted in a conformational change of the TENT5D protein. We precisely analyzed the subcellular localization of TENT5D in germ cells in humans and mice. And we found that TENT5D was predominantly detected in the head and flagellum of elongating spermatids and epididymal spermatozoa. CONCLUSIONS: Our results showed further evidence of a relationship between TENT5D mutation and human male infertility, providing new genetic insight for use in the diagnosis and treatment of male infertility.

13.
Clin Psychopharmacol Neurosci ; 22(1): 105-117, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38247417

RESUMO

Objective: : The relationship between adverse childhood experiences and methamphetamine use disorder (MUD) has been shown in previous studies; nevertheless, the underlying neural mechanisms remain elusive. Childhood trauma is associated with aberrant functional connectivity (FC) within the default-mode network (DMN). Furthermore, within the DMN, FC may contribute to impaired self-awareness in addiction, while cross-network FC is critical for relapse. We aimed to investigate whether childhood trauma was associated with DMN-related resting-state FC among healthy controls and patients with MUD and to examine whether DMN-related FC affected the effect of childhood trauma on the symptom load of MUD diagnosis. Methods: : Twenty-seven male patients with MUD and 27 male healthy controls were enrolled and completed the Childhood Trauma Questionnaire. DMN-related resting-state FC was examined using functional magnetic resonance imaging. Results: : There were 47.1% healthy controls and 66.7% MUD patients in this study with adverse childhood experiences. Negative correlations between adverse childhood experiences and within-DMN FC were observed in both healthy controls and MUD patients, while within-DMN FC was significantly altered in MUD patients. The detrimental effects of adverse childhood experiences on MUD patients may be attenuated through DMN-executive control networks (ECN) FC. Conclusion: : Adverse childhood experiences were negatively associated with within-DMN FC in MUD patients and healthy controls. However, DMN-ECN FC may attenuate the effects of childhood trauma on symptoms load of MUD.

14.
Tohoku J Exp Med ; 262(2): 63-74, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-37438122

RESUMO

Cuproptosis can serve as potential prognostic predictors in patients with cancer. However, the role of this relationship in ovarian serous cystadenocarcinoma (OV) remains unclear. 376 OV tumor samples were obtained from the Cancer Genome Atlas (TCGA) database, and long non-coding RNAs (lncRNAs) related to cuproptosis were obtained through correlation analysis. The risk assessment model was further constructed by univariate Cox regression analysis and LASSO Cox regression. Bioinformatics was used to analyze the regulatory effect of relevant risk assessment models on tumor mutational burden (TMB) and immune microenvironment. We obtained 5 lncRNAs (AC025287.2, AC092718.4, AC112721.2, LINC00996, and LINC01639) and incorporated them into the Cox proportional hazards model. Kaplan-Meier (KM) curve analysis of the prognosis found that the high-risk group was associated with a poorer prognosis. The receiver operating characteristic (ROC) curve showed stronger predictive power compared to other clinicopathological features. Immune infiltration analysis showed that high-risk scores were inversely correlated with CD8+ T cells, CD4+ T cells, macrophages, NK cells, and B cells. Functional enrichment analysis found that they may act via the extracellular matrix (ECM)-interacting proteins and other pathways. We successfully constructed a reliable cuproptosis-related lncRNA model for the prognosis of OV.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , RNA Longo não Codificante/genética , Cistadenocarcinoma Seroso/genética , Prognóstico , Carcinoma Epitelial do Ovário , Imunoterapia , Neoplasias Ovarianas/genética , Microambiente Tumoral
15.
Intern Emerg Med ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066343

RESUMO

The aim of this study was to compare the clinical characteristics between survivors and non-survivors after acute diquat (DQ) poisoning. Patients treated in the Emergency Department of Fu Yang People's Hospital for DQ poisoning between January 2018 and February 2022 were enrolled in this retrospective comparative study. A total of 65 patients were collected, including 36 males (55.4%) and 29 females (44.6%). There were 34 survivors (52.3%), and 31 non-survivors (47.7%). Patients in the non-survivor group were significantly older (P = 0.003), received a higher dose of DQ before admission (P < 0.001), had more severe organ damage (P < 0.001), lower respiration rate (P < 0.001) and enema (P = 0.009), lower GCS score (P = 0.038), and higher SIRS score (P = 0.018) and APACHE-II score (P < 0.001) than patients in the survivor group. Additionally, biochemical indicators after admission between survivors and non-survivors were significantly different (all P < 0.05). Multivariate logistic regression analysis showed that respiratory failure (P = 0.021), the dose of DQ (P = 0.022), respiratory rate (P = 0.007), and highest alanine transaminase (ALT) level after admission (P = 0.030) were independent risk factors for acute DQ-induced death. These data suggest that non-survivors with acute DQ poisoning are more likely to suffer from respiratory failure, have higher respiratory rate and ALT after admission, and are exposed higher doses of DQ before admission than survivors.

16.
Elife ; 122023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126872

RESUMO

Male infertility is a worldwide population health concern. Asthenoteratozoospermia is a common cause of male infertility, but its etiology remains incompletely understood. No evidence indicates the relevance of CFAP52 mutations to human male infertility. Our whole-exome sequencing identified compound heterozygous mutations in CFAP52 recessively cosegregating with male infertility status in a non-consanguineous Chinese family. Spermatozoa of CFAP52-mutant patient mainly exhibited abnormal head-tail connection and deformed flagella. Cfap52-knockout mice resembled the human infertile phenotype, showing a mixed acephalic spermatozoa syndrome (ASS) and multiple morphological abnormalities of the sperm flagella (MMAF) phenotype. The ultrastructural analyses further revealed a failure of connecting piece formation and a serious disorder of '9+2' axoneme structure. CFAP52 interacts with a head-tail coupling regulator SPATA6 and is essential for its stability. Expression of microtubule inner proteins and radial spoke proteins were reduced after the CFAP52 deficiency. Moreover, CFAP52-associated male infertility in humans and mice could be overcome by intracytoplasmic sperm injection (ICSI). The study reveals a prominent role for CFAP52 in sperm development, suggesting that CFAP52 might be a novel diagnostic target for male infertility with defects of sperm head-tail connection and flagella development.


Assuntos
Infertilidade Masculina , Sêmen , Animais , Humanos , Masculino , Camundongos , Proteínas do Citoesqueleto , Flagelos , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Camundongos Knockout , Proteínas dos Microtúbulos , Cabeça do Espermatozoide , Cauda do Espermatozoide
17.
Phys Med Biol ; 68(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37949063

RESUMO

Objective. Transcranial magnetic stimulation (TMS) coil design involves a tradeoff among multiple parameters, including magnetic flux density (B), inductance (L), induced electric (E) field, focality, penetration depth, coil heating, etc. Magnetic materials with high permeability have been suggested to enhance coil efficiency. However, the introduction of magnetic core invariably increases coil inductance compared to its air-core counterpart, which in turn weakens theEfield. Our lab previously reported a rodent-specific TMS coil with silicon steel magnetic core, achieving 2 mm focality. This study aims to better understand the tradeoffs amongB,L,andEin the presence of magnetic core.Approach. The magnetic core initially operates within the linear range, transitioning to the nonlinear range when it begins to saturate at high current levels and reverts to the linear range as coil current approaches zero; both linear and nonlinear analyses were performed. Linear analysis assumes a weak current condition when magnetic core is not saturated; a monophasic TMS circuit was employed for this purpose. Nonlinear analysis assumes a strong current condition with varying degrees of core saturation.Main results. Results reveal that, the secondaryEfield generated by the silicon steel core substantially changed the dynamics during TMS pulse. Linear and nonlinear analyses revealed that higher inductance coils produced stronger peakEfields and longerEfield waveforms. On a macroscopic scale, the effects of these two factors on neuronal activation could be conceptually explained through a one-time-constant linear membrane model. Four coils with differentB,L,andEcharacteristics were designed and constructed. BothEfield mapping and experiments on awake rats confirmed that inductance could be much higher than previously anticipated, provided that magnetic material possesses a high saturation threshold.Significance. Our results highlight the novel potentials of magnetic core in TMS coil designs, especially for small animals.


Assuntos
Silício , Estimulação Magnética Transcraniana , Ratos , Animais , Desenho de Equipamento , Estimulação Magnética Transcraniana/métodos , Roedores , Eletricidade , Aço
18.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37987005

RESUMO

Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency, ω, in addition to the diffusion tensor, D, and relaxation, R1, R2, correlations. A D(ω)-R1-R2 clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on their D(ω)-R1-R2 distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.

19.
Micromachines (Basel) ; 14(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37893246

RESUMO

Bacterial cellulose (BC) is a green, natural biopolymer with excellent biocompatibility and a film-forming ability. However, its lack of inherent antibacterial activity restricts its application in medical materials and food preservation. In this study, BC derived from the juice of discarded Xinhui citrus was obtained through fermentation and further modified in situ with graphene oxide (GO) to obtain BC(GO). Subsequently, BC(GO) was loaded with cell-compatible polypyrrole (PPy) and antibacterial agent silver nanoparticles (AgNPs) to prepare Ag-PPy/BC(GO) composite films. Composite films were characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) to evaluate their chemical structure and morphology. The results demonstrate effective adsorption of PPy and AgNPs onto the surface of BC nanofibers modified with GO. Antibacterial experiments reveal synergistic antibacterial effects of PPy and AgNPs. The Ag-PPy/BC(GO) membranes exhibit strong antibacterial activity against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with 48-h growth inhibition rates of 75-84% and 82-84%, respectively.

20.
Res Sq ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37886574

RESUMO

Cannabis legalization continues to progress in the USA for medical and recreational purposes. G protein-coupled receptor 55 (GPR55) is a putative "CB3" receptor. However, its functional role in cannabinoid action and drug abuse is not explored. Here we report that GPR55 is mainly expressed in cortical and subcortical glutamate neurons and its activation attenuates nicotine taking and seeking in rats and mice. RNAscope in situ hybridization detected GPR55 mRNA in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons in wildtype, but not GPR55-knockout, mice. GPR55 mRNA was not detected in midbrain dopamine (DA) neurons in either genotype. Immunohistochemistry assays detected GPR55-like staining, but the signal is not GPR55-specific as the immunostaining was still detectable in GPR55-knockout mice. We then used a fluorescent CB1-GPR55 ligand (T1117) and detected GPR55 binding in cortical and subcortical glutamate neurons, but not in midbrain DA neurons, in CB1-knockout mice. Systemic administration of O-1602, a GPR55 agonist, dose-dependently increased extracellular glutamate, not DA, in the nucleus accumbens. Pretreatment with O-1602 failed to alter Δ9-tetrahydrocannabinol (D9-THC)-induced triad effects or intravenous cocaine self-administration, but it dose-dependently inhibited nicotine self-administration under fixed-ratio and progressive-ratio reinforcement schedules in rats and wildtype mice, not in GPR55-knockout mice. O-1602 itself is not rewarding or aversive as assessed by optical intracranial self-stimulation (oICSS) in DAT-Cre mice. These findings suggest that GPR55 is functionally involved in nicotine reward process possibly by a glutamate-dependent mechanism, and therefore, GPR55 deserves further research as a new therapeutic target for treating nicotine use disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...